507. 完美数
2019-07-20
本文总阅读量:次
题目链接
https://leetcode-cn.com/problems/perfect-number/
题目描述
对于一个 正整数,如果它和除了它自身以外的所有正因子之和相等,我们称它为“完美数”。
给定一个 正整数 n
, 如果他是完美数,返回 True
,否则返回 False
示例:
输入: 28
输出: True
解释: 28 = 1 + 2 + 4 + 7 + 14
注意:
输入的数字 n
不会超过 100,000,000. (1e8)
解题方案
思路
- 标签:数学
- 首先由于完美数的定义,需要排除自身,所以数字1一定不是完美数
-
其次我们需要计算num除了它自身以外的所有正因子之和sum,正因子必然是成对出现的,故而我们只需要遍历到num的平方根sqrt即可
- 以36为例,它的非自身外正因子有,1、2、3、4、6、9、12、18,其中1和6单独计算,[2, 18]、[3, 12]、[4, 9]都是对应关系、
- 所以只需要遍历到36的平方根6就可以获取全部正因子
- 1单独计算的原因是要排除自身,6单独计算的原因是 6 * 6 = 36,两个值相同,故而只能计算一遍
- 时间复杂度:O(logn),n为num的大小
Tips:完美数只有 6, 28, 496, 8128, 33550336 这几个,可以通过判断该数字是否为以下几个来解决
代码
- Java版本
class Solution {
public boolean checkPerfectNumber(int num) {
if(num == 1) {
return false;
}
int sum = 1; // 正整数一定会有一个1,同时不用考虑自身,所以单独处理
int i = 2;
double sqrt = Math.sqrt(num);
for(;i < sqrt;i++) {
if(num % i == 0) {
sum += i;
sum += num / i;
}
}
// 此处单独处理的原因在于只需要加1次i值,如果在循环中会加2次
if(i * i == num) {
sum += i;
}
return sum == num;
}
}
- JavaScript版本
/**
* @param {number} num
* @return {boolean}
*/
var checkPerfectNumber = function(num) {
if(num == 1) {
return false;
}
let sum = 1; // 正整数一定会有一个1,同时不用考虑自身,所以单独处理
let i = 2;
const sqrt = Math.sqrt(num);
for(;i < sqrt;i++) {
if(num % i == 0) {
sum += i;
sum += num / i;
}
}
// 此处单独处理的原因在于只需要加1次i值,如果在循环中会加2次
if(i * i == num) {
sum += i;
}
return sum == num;
};
画解
后台回复「算法」,加入天天算法群 觉得算法直击灵魂,欢迎点击在看和转发